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Abstract — This paper presents the development of
unconditionally stable full-wave 2D ADI-FDTD method for
analysis of characteristics of arbitrary uniform wave guiding
structures. The method is derived by assuming the field
variation of ¢’ along the z-direction and multiplying the
field equations with an additional factor j in the recently
developed 3-dimensional ADI-FDTD algorithm. In difference
from the conventional full-wave 2D FDTD, it does not require
that the time step be bounded by the stability condition. As a
result, much of CPU time and memory can be saved. The
dispersion relation of the method is also presented and is used
to determine effects of discretization parameters on the
accuracy. To validate the method, a boxed microstrip line on
an anisotropic sapphire substrate is calculated and the results
are compared with those obtained with other methods.

I. INTRODUCTION

. Recently a 3D alternating-direction-implicit (ADI)
method was developed and applied to the solutions of
Maxwell’s equations using a variation of FDTD method
[1][2]. This ADI-FDTD method eliminates the CFL
stability condition and is unconditionally stable. As a
result, in the regions of a solution domain that require
variable meshes, the time step can be taken uniformly the
same as that used in the coarse grid. That leads to
reductions in potentially significant computational
expenditures, such as CPU time.

Although the ADI-FDTD is more efficient than the
conventional FDTD in certain cases [2], it suffers the
disadvantage of inefficiency and inaccuracy when it is
applied for the full-wave analysis of modes in
longitudinally uniform wave guiding structures. The
reason is that with the 3D ADI-FDTD method, either time
and memory consuming three dimensional simulations are
required or stable super-absorbing boundary conditions are
needed(which are hard to find in particular for the
inhomogeneous guides). With the conventional 3D FDTD,
the same problems exist. As a result, the compact 2D
FDTD method was developed [3](4]. However, the
compact 2D method is conditionally stable and the CFL
stability condition still remains [5]. The time step has to be

small when the spatial discretization step is small. For a
non-uniform mesh, the time step may become very small
due to the small fine-mesh size. That may lead to
requirement of a large number of iterations and therefore
large CPU time.

In this paper, we apply the principle of the compact
2D technique to the 3D ADI-FDTD method and develop a
novel unconditionally stable full-wave 2D ADI-FDTD
method for analysis of wave guiding structures. In
comparisons with the 3D ADI-FDTD approach, the

* proposed scheme presents much improved efficiency and

accuracy. In comparisons with the conventional compact
2D-FDTD techniques, the proposed scheme allows a
larger time step to be used irrespective of the spatial step
and propagation constant, leading to improvements in
computation efficiency in particular in a non-uniform mesh
setting.

II. FORMULATIONS

The full-wave 2D ADI-FDTD is derived from the
three dimensional ADI-FDTD [1]. By applying the
procedure described in [4] to the 3D ADI-FDTD schemes
[1] and assuming

E{(x,3,2),E}(x,y,2), H}(x,y,2) =
{E: (). E) (x5, 0), H (x, )} jexp{-jfz}y (1)

Hi(x,y,2),H)(x,y,2), B[ (x,,2) =
{H; (%,y), H}(x,y), E; (x,y)}exp{-jfz}  (2)
We can obtain the following unconditionally stable

full-wave 2D ADI-FDTD formulations:
1) at (n+1/2)th time step,
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2) at (n+1)th time step,

n+l — pn+l/2
wi+di) Ex(n;,,‘)
+At_[(H"+”2 —H™2 Y Ap+BH™, 1 (4
2e z(i+1l,j+%) z(i+§,j—%) Y y(i+%.j) ( )

Equations for other field components can be obtained
similarly. The further simplification of the above equations
to the wave-equation-like equations for computation can
also be made in a way similar to that described in [1].

It can be seen that there are no third dimensional
discretization step Az and the associated index k any
more. Therefore this method reduces a 3D ADI-FDTD
analysis to a two dimensional analysis.

I1I. STABILITY AND DISPERSION ANALYSIS

The proof of the unconditional stability of full-wave
2D ADI-FDTD follows the analysis presented in [1] for
the 3D ADI-FDTD method in a homogeneous, lossless
medium.

By assuming the spatial frequencies to be k, and k,
along the x and y directions, the field components in the
spatial spectral domain can be written as

n —n — j(k mAx+k,nAy)
E =Eje

a(m,n)

H"

- n —J(k;mAx+k nby)
a(mn) Hae

a=x,yz ®)

Substitution of these equations into (3), (4) and the
like equations for other field components can lead to
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It is not difficult to prove, with the help of Maple 5.1,
that all the eigenvalues of A have the magnitude of unity.
That means the full-wave 2D ADI-FDTD retains the
property of uncondional stability as its 3D ADI-FDTD
counterpart.

The numerical dispersion relation for the full-wave
2D ADI-FDTD scheme can be obtained as described in

(6],

sin’ (wAf) =
JVAW W) WIW] A WO+ WOW DWW +1)

(1 +Wf)’(l+W},’)Z(1-+-Wf)2 M

An air-filled (a xb = 9mm x 6mm) metallic waveguide
is used to assess the dispersion errors. For such a

waveguide

. Inh . mmh sph
W, = ssm(—zz) W,= ssm(—z—b—) W, = = ®
with
s= Y.A_t Ax = Ay =h
h
and the analytical value of the resonant wavelength for the
(1, m) mode is

2
A= 9
v Jdla) + (mib) +(B/n) ®

By substituting the equations (8) into (7), the
numerical resonant wavelength A, is found to be:
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Fig. 1 and Fig.2 illustrate the variation of the relative
error with the cell size h and propagation constant 8
respectively. The error with the compact 2D-FDTD
method is also plotted for reference.
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Fig. 1. Relative enor versus cell size h when propagation

constant $=209.4395 m™ and the Courant number s=0.5.
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Fig.2. Relative error versus propagation constant when

h=0.5mm and Courant number s=0.5.

As can be seen, the relative error of the numerical
wavelength becomes larger as h or B increase, and the
relative error of the full-wave 2D ADI-FDTD and the
compact 2D-FDTD are very comparable with a small h or
B for lower-order modes.

Fig. 3 shows the error versus the Courant numbers,

which is proportional to the time step. It suggests that the
Courant number can go as high as 10 for TE10 mode with
errors of less than 1.5%. This means the number of
iteration with the proposed scheme can be at least 14 times
fewer than the conventional 2D scheme (whose Courant
number has to be less than 1/+/2 ) for TE10 mode.
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Fig.3 Relative error versus the Courant number when
propagation constant $=209.4395 m™ and h=0.5mm.

IV. NUMERICAL RESULT

To validate the proposed 2D ADI-FDTD, we firstly
applied it to a rectangular air-filled metallic
waveguide (axb=9mmx6mm) and compared the
computed dominant frequencies with analytic values and
the results obtained with the 3D ADI-FDTD method using
the technique described in [7]. Table I presents the
comparisons. It is seen that all the errors are less than
0.2%. Furthermore, because the full-wave 2D ADI-FDTD
method handles the z derivative analytically, it is more
accurate than 3D ADI-FDTD when a smaller P is selected.

TABLE
COMPARISON OF DOMINANT FREQUENCIES (GHZ)
Fuli-wave 2D
B Analytic ADI-FDTD ADI-FDTD

Freq Freq. Emr.% Freq. Emr.%

104.720 | 17.389 17.326 0.358 | 17.358 | 0.175
209.440 | 19.423 19.392 0.160 | 19.396 | 0.139
314.159 | 22.407 22.378 0.130 { 22.376 | 0.139
418.879 26.016 25.992 0.093 [ 25.978 | 0.147

The second validation example we computed is a
boxed microstrip line on an anisotropic sapphire substrate,
as shown in Fig 4. To facilitate the comparisons, the
geometry parameters were taken the same as those in [4].
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a

Fig.4. boxed microstrip line on sapphire,a = 6.5mm
b=35mm,h=w=15mm,e, =¢,=94,¢, =11 .6

Fig.5 shows the dispersion diagram obtained by
compact 2D FDTD, 3D ADI-FDTD and the proposed 2D
ADI-FDTD respectively. The results are found to be in a
good agreement with those methods.
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Fig. 5. Numerical comparison between Compact 2D FDTD,

3D ADI-FDTD and the proposed 2D ADI-FDTD.

These simulations were performed on AMD 950 MHz
PC. The CPU time and required memory size of these
simulations are shown in Table II. Note the CPU time for
the compact 2D FDTD and the proposed 2D ADI-FDTD
are the time for computing the five frequency points that
forms the dispersion curves in Fig. 5. The CPU time for
the 3D ADI-FDTD is the time for computing one of the
middle frequency point where B=O.6283mm".

TABLE II
USAGE OF CPU TIME AND MEMORY

At Steps Time Memory

Compact 2D
FDTD 1.66ps | 50000 156s 171KByte

Full-wave 2D
ADLFDTD 16.6ps | 5000 70s 220KByte

3D ADI_FDTD | 16.6ps | 5000 | 2257s 11694KByte

It can be seen that with the comparable numerical
accuracy, the time step of full-wave 2D ADI-FDTD can be
set 5 times as large as the compact 2D FDTD. As a result,
a saving factor of 2.23 in CPU time was achieved. The
computation memory required with the full-wave 2D ADI-
FDTD is, however, about 29% higher than that with the
compact 2D FDTD method. In comparison with the 3D
ADI-FDTD approach, both the CPU time and memory
saving are significant. The saving factors are about 32 and
53 respectively.

V. CONCLUSION

A novel unconditionally stable 2D ADI-FDTD is
developed for the analysis of hybrid modes in
inhomogeneous wave guiding structures. The numerical
stability and numerical dispersion of the method are
presented. Through numerical experiments, it is found that
the proposed 2D ADI-FDTD is generally more efficient
and accurate than the 3D ADI-FDTD method and is more
CPU-time efficient than compact 2D FDTD .
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