
IF-TH-17 

Development of an Unconditionally Stable Full-wave 2D ADI-FDTD 
Method for Analysis of Arbitrary Wave Guiding Structures 

Changning Ma*, Zhizhang Chen* and An-ping Zhao+ 

*Wireless Research Laboratory, Department of Electrical and Computer Engineering, 
Dalhousie University, Halifax, Nova Scotia, Canada, B3 J 2X4 

+Nokia Research Center, Itamerenkatu 1 1 - 13, Helsinki, Finland 

Abstract - This paper presents the development of 
unconditionally stable full-wave 2D ADI-FDTD method for 
analysis of characteristics of arbitrary uniform wave guiding 
structures. ThTjpethod is derived by assuming the field 
variation of e along the z-direction and multiplying the 
field equations with an additional factor j in the recently 
developed J-dimensional ADI-FDTD algorithm. In difference 
from the conventional full-wave 2D FDTD, it does not require 
that the time step be bounded by the stability condition. As a 
result, much of CPU time and memory can be saved. The 
dispersion relation of the method is also presented and is used 
to determine effects of discretization parameters on the 
accuracy. To validate the method, a boxed microstrip line on 
an anisotropic sapphire substrate is calculated and the results 
are compared with those obtained with other methods. 

I. I~JTROWCH~N 

Recently a 3D alternating-direction-implicit (ADI) 
method was developed and applied to the solutions of 
Maxwell’s equations using a variation of FDTD method 
[1][2]. This ADI-FDTD method eliminates the CFL 
stability condition and is unconditionally stable. As a 
result, in the regions of a solution domain that require 
variable meshes, the time step can be taken uniformly the 
same as that used in the coarse grid. That leads to 
reductions in potentially significant computational 
expenditures, such as CPU time. 

Although the ADI-FDTD is more efficient than the 
conventional FDTD in certain cases [2], it suffers the 
disadvantage of ineff’iciency and inaccuracy when it is 
applied for the full-wave analysis of modes in 
longitudinally uniform wave guiding structures. The 
reason is that with the 3D ADI-FDTD method, either time 
and memory consuming three dimensional simulations are 
required or stable super-absorbing boundary conditions are 
needed(which are hard to find in particular for the 
inhomogeneous guides). With the conventional 3D FDTD, 
the same problems exist. As a result, the compact 2D 
FDTD method was developed [3][4]. However, the 
compact 2D method is conditionally stable and the CFL 
stability condition still remains [5]. The time step has to be 

small when the spatial discretization step is small. For a 
non-uniform mesh, the time step may become very small 
due to the small fine-mesh size. That may lead to 
requirement of a large number of iterations and therefore 
large CPU time. 

In this paper, we apply the principle of the compact 
2D technique to the 3D ADI-FDTD method and develop a 
novel unconditionally stable full-wave 2D ADI-FDTD 
method for analysis of wave guiding structures. In 
comparisons with the 3D ADI-FDTD approach, the 
proposed scheme presents much improved efficiency and 
accuracy. In comparisons with the conventional compact 
2D-FDTD techniques, the proposed scheme allows a 
larger time step to be used irrespective of the spatial step 
and propagation constant, leading to improvements in 
computation efficiency in particular in a non-uniform mesh 
setting. 

II. FORMULATIONS 

The full-wave 2D ADI-FDTD is derived from the 
three dimensional ADI-FDTD [l]. By applying the 
procedure described in [4] to the 3D ADI-FDTD schemes 
[I] and assuming 

E,“(x,y,z),E,“x,y,z),H:(x,y,z) = 

{E,(x,y),E,“(x,y),H:(x,y)}jexp{-jpzl (1) 

H,“(x,y,z),H,“(x,y,z),E:(x,y,z)= 

{H:(x,y),H,“(x,y),Er(x,y)}exp{-jpt} (2) 
We can obtain the following imconditionally stable 

full-wave 2D ADI-FDTD formulations: 
1) at (n+lR)th time step, 
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Equations for other field components can be obtained 
similarly. The further simplification of the above equations 
to the wave-equation-like equations for computation can 
also be made in a way similar to that described in [ 11. 

It can be seen that there are no third dimensional 
discretization step & and the associated index k any 
more. Therefore this method reduces a 3D ADI-FDTD 
analysis to a two dimensional analysis. 

III. STABILITY AND DISPERSION ANALYSIS 

The proof of the unconditional stability of full-wave 
2D ADI-FDTD follows the analysis presented in [l] for 
the 3D ADI-FDTD method in a homogeneous, lossless 
medium. 

By assuming the spatial frequencies to be k, and k,, 
along the x and y directions, the field components in the 
spatial spectral domain can be written as 

Substitution of these equations into (3), (4) and the 
like equations for other field components can lead to 

with 

Jr”+’ = A,X n+“2 =I\,A,X” =M” (6) 

X” =[E:,E,“,E:,H=,H,“,H:]’ 
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It is not difficult to prove, with the help of Maple 5.1, 
that all the eigenvalues of A have the magnitude of unity. 
That means the full-wave 2D ADI-FDTD retains the 
property of uncondional stability as its 3D ADI-FDTD 
counterpart. 

The numerical dispersion relation for the full-wave 
2D ADI-FDTD scheme can be obtained as described in 
FL 

sin’(uult) = 

An air-tilled (a x b = 9mm x 6mm) metallic waveguide 
is used to assess the dispersion errors. For such a 
waveguide 

W, = ssin(g) WY = ssin(%) W, = F (8) 

with 
+ h=Ay=h 

and the analytical value of the resonant wavelength for the 
(1, m) mode is 

&I = 
z 

,/(Ila)2 +(m/b)2 +(P/x)* 
(9) 

By substituting the equations (8) into (7), the 
numerical resonant wavelength il(,m is found to be: 
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;l;m = nhs /sin-’ s’(?p2hzsin2(~)+4sin 2 lzh 
\2a) 

+4?sin2(z)sin2( $)+4sin’(~)+P2h’ 

+s2sin2($)~‘h2~/sin2(~)sin2($)j2h2+4) 

/((I+$ sin’(~))‘(l+s2 sin2(~))2(4+s’~2h’)2)]‘2}(LO) 

Fig. 1 and Fig.2 illustrate the variation of the relative 
error with the cell size h and propagation constant p 
respectively. The error with the compact 2D-FDTD 
method is also plotted for reference. 
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Fig. 1. Relative error versus cell size h when propagation 
constant b=209.4395 me’ and the Courant number s=O.5. 
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Fig. 2. Relative error versus propagation constant when 
h=OSmm and Courant number s=O.5. 

As can be seen, the relative error of the numerical 
wavelength becomes larger as h or p increase, and the 
relative error of the full-wave 2D ADI-FDTD and the 
compact ZD-FDTD are very comparable with a small h or 
fi for lower-order modes. 

Fig. 3 shows the error versus the Courant numbers, 

which is proportional to the time step. It suggests that the 
Courant number can go as high as 10 for TElO mode with 
errors of less than 1.5%. This means the number of 
iteration with the proposed scheme can be at least 14 times 
fewer than the conventional 2D scheme (whose Courant 
number has to be less than 1 / & ) for TE 10 mode. 
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Fig. 3 Relative error versus the Courant number when 
propagation constant b=209.4395 me’ and h=O.5mm. 

IV. NUMERICAL RESULT 

To validate the proposed 2D ADI-FDTD, we firstly 
applied it to a rectangular air-tilled metallic 
waveguide (ax b = 9mm x 6mm) and compared the 
computed dominant frequencies with analytic values and 
the results obtained with the 3D ADI-FDTD method using 
the technique described in [7]. Table I presents the 
comparisons. It is seen that all the errors are less than 
0.2%. Furthermore, because the full-wave 2D ADI-FDTD 
method handles the z derivative analytically, it is more 
accurate than 3D ADI-FDTD when a smaller p is selected. 

TABLE I 
COMPARISON OF DOMINANT FRECUENCIES (GHZ) 

ADI-FDTD Full-wave 2D 

P 
Analytic ADI-FDTD 

Freq ’ 
Freq. Err.% Freq. Err.% 

104.720 17.389 17.326 0.359 17.358 0.175 
209.440 19.423 19.392 0.160 19.396 0.139 
314.159 22.407 22.378 0.130 22.376 0.139 
418.879 26.016 25.992 0.093 25.978 0.147 

The second validation example we computed is a 
boxed microstrip line on an anisotropic sapphire substrate, 
as shown in Fig 4. To facilitate the comparisons, the 
geometry parameters were taken the same as those in [4]. 

. 
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Fig. 4. boxed microstrip line on sapphire, a = 6.5mm 
b=3.5mm,h=w=l.5mm,~,=&,=9.4,&,=11.6 

Fig.5 shows the dispersion diagram obtained by 
compact 2D FDTD, 3D ADI-FDTD and the proposed 2D 
ADI-FDTD respectively. The results are found to be in a 
good agreement with those methods. 
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Fig. 5. Numerical comparison between Compact 2D FDTD, 
3D ADI-FDTD and the proposed 2D ADI-FD’TD. 

These simulations were performed on AMD 950 MHz 
PC. The CPU time and required memory size of these 
simulations are shown in Table II. Note the CPU time for 
the compact 2D FDTD and the proposed 2D ADI-FDTD 
are the time for computing the five frequency points that 
forms the dispersion curves in Fig. 5. The CPU time for 
the 3D ADI-FDTD is the time for computing one of the 
middle frequency point where p=0.6283mms’. 

TABLE II 
USAGE OF CPU TIME AND MEMORY 

I At Steps Time Memory 

Compact 2D 
FDTD 

1.66ps 50000 156s 171KE4yte 

Full-wave 2D 
ADI-FDTD 

16.6ps 5000 70s 220KByte 

3D ADI-FDTD 16.6ps 5000 2257s 11694KByte 

. 

It can be seen that with the comparable numerical 
accuracy, the time step of full-wave 2D ADI-FDTD can be 
set 5 times as large as the compact 2D FDTD. As a result, 
a saving factor of 2.23 in CPU time was achieved. The 
computation memory required with the full-wave 2D ADI- 
FDTD is, however, about 29% higher than that with the 
compact 2D FDTD method. In comparison with the 3D 
ADI-FDTD approach, both the CPU time and memory 
saving are significant. The saving factors are about 32 and 
53 respectively. 

V. CONCLUSION 

A novel unconditionally stable 2D ADI-FDTD is 
developed for the analysis of hybrid modes in 
inhomogeneous wave guiding structures. The numerical 
stability and numerical dispersion of the method are 
presented. Through numerical experiments, it is found that 
the proposed 2D ADI-FDTD is generally more efficient 
and accurate than the 3D ADI-FDTD method and is more 
CPU-time efficient than compact 2D FDTD . 
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